

Enseignant : Dr. Sylvain Bréchet Cours : physique générale I

Echéance: vendredi 18 octobre 2024

Durée: 90 minutes

1

Blocs avec frottement

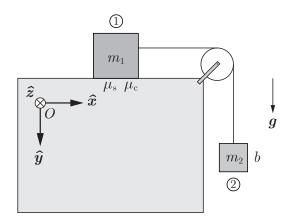
NOM:
PRENOM:
N° SCIPER :
SECTION: Mathématiques
SALLE:

L'exercice à rendre comporte un énoncé illustré et détaillé sur la page de gauche et des questions sur la page de droite. Les développements mathématiques et physiques sont à effectuer sur les pages quadrillées.

Consignes

- Le formulaire de l'examen (1 page A4 recto-verso) est autorisé.
- L'utilisation de tout appareil électronique est interdite.
- Les **réponses** sont à retranscrire sur les pointillés sous chaque question dans l'espace réservé à cet effet.
- Utiliser un stylo à encre noir ou bleu foncé (éviter d'utiliser un crayon) et effacer proprement avec du correcteur blanc si nécessaire.
- Les feuilles de papier brouillon ne seront pas corrigées.

1. Blocs avec frottement



Un bloc $\bigcirc 1$, considéré comme un point matériel de masse m_1 , est posé sur un plan horizontal et attaché à un fil inextensible de masse négligeable qui passe au-dessus d'une poulie de masse négligeable. Un bloc $\bigcirc 2$, considéré comme un point matériel de masse m_2 , est suspendu à l'autre extrémité du fil. Le fil se déplace avec le mouvement de rotation propre de la poulie sans glisser. Le frottement sec entre le bloc $\bigcirc 1$ et le plan horizontal est caractérisé par un coefficient de frottement statique μ_s et un coefficient de frottement cinétique μ_c . Le frottement visqueux en régime laminaire entre le bloc $\bigcirc 2$ et l'air est caractérisé par le coefficient b>0. Le temps caractéristique d'amortissement du système par frottement visqueux est,

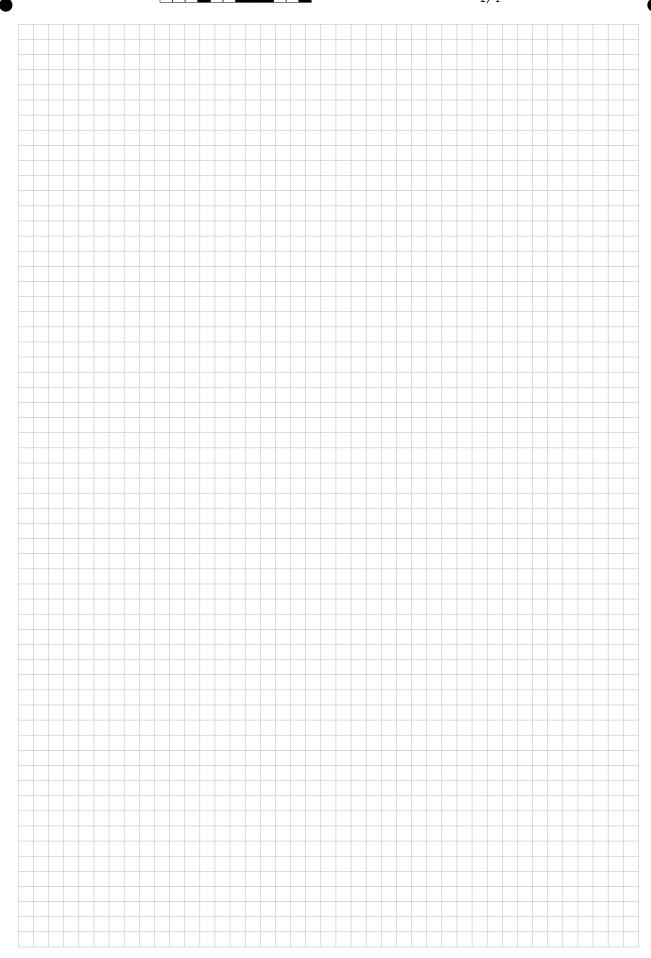
$$\tau = \frac{m_1 + m_2}{b}$$

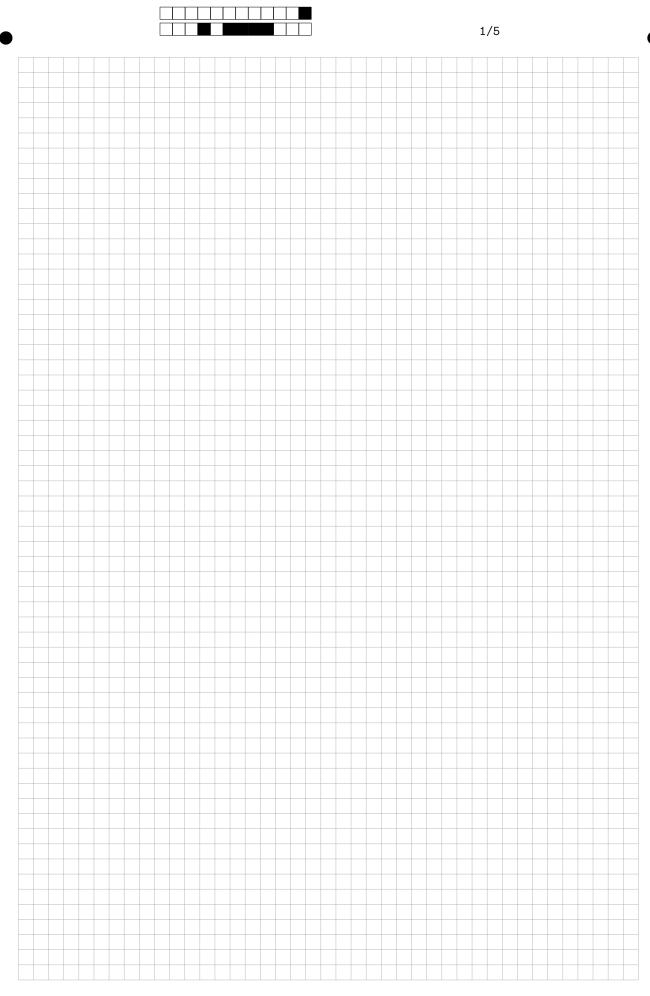
Pour décrire la dynamique du système, on choisit un repère cartésien $(O, \hat{x}, \hat{y}, \hat{z})$ où le vecteur unitaire \hat{x} est orienté le long de l'axe horizontal vers la droite, le vecteur unitaire \hat{y} est orienté le long de l'axe vertical vers le bas et le vecteur unitaire \hat{z} entre dans le plan vertical ci-dessus.

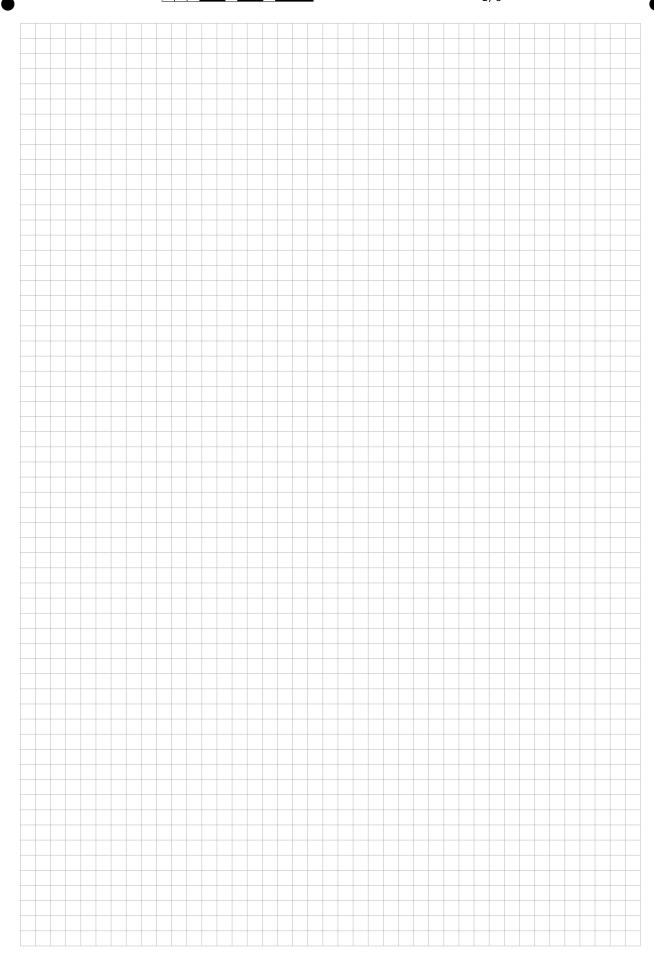
Les réponses doivent être exprimées en termes des grandeurs scalaires données ci-dessus, des coordonnées cartésiennes x_1 , x_2 y_1 , y_2 , z_1 et z_2 des deux blocs et de leurs dérivées temporelles, des vecteurs de base $\hat{\boldsymbol{x}}$, $\hat{\boldsymbol{y}}$ et $\hat{\boldsymbol{z}}$, de la norme du champ gravitationnel g et des grandeurs scalaires spécifiées dans l'énoncé de chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes

1.	Déterminer les équations scalaires du mouvement de chaque bloc compte tenu de la tension dans le fil
	1
	<u>(2)</u>
2.	Donner la condition liant les dérivées temporelles secondes des coordonnées cartésiennes des blocs (1) et (2) .
3.	Donner la condition liant les normes des tensions dans le fil.
4.	Déterminer l'équation du mouvement du système formé des deux blocs.
5.	Déterminer l'évolution temporelle $\dot{y}_2\left(t\right)$ de la coordonnée verticale de la vitesse du bloc 2 compte tenu du fait qu'il est initialement immobile, c'est-à-dire $\dot{y}_2\left(0\right)=0$.
	$\dot{y}_{2}\left(t ight)=$
6.	Déterminer la vitesse scalaire limite $v_{2,\infty}$ de chute du bloc $\widehat{\ 2}$.
	$v_{2,\infty} = \dots$
7.	Déterminer la condition pour que le système formé des deux blocs et de la poulie reste immobile (c'est-à-dire en régime statique).







1/7

